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Abstract 

Estimation of the fundamental matrix plays a significant role in the field of computer vision. Two different approaches are presented 

to estimate the fundamental matrix from uncalibrated images: one is an improved iterative approach; the other an improved robust 

estimation. The improved iterative approach, utilizing the least-squares technique, makes use of several point matches to compute the 

initial fundamental matrix and weights and determines the computation loop by concerning the Euclidean distance between matched 

points and epipolar lines. The improved robust estimation extends the original RANSAC approach by removing outliers from the points 

set every five inner loops after being evaluated with corresponded scores to get the optimal points set and then estimating the 

fundamental matrix through the orthogonal least-square algorithm at each iteration. Experimental results that the improved iterative 

performs better when both the variance of Gaussian noises and the percentage of outliers are small. Results reveal that the proposed 

technique of removing outliers works successfully and fine, especially with a high level of outliers; and it is superior to the original 
RANSAC in terms of means and standard deviation on real images. 
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1 Introduction 

 
The fundamental matrix encapsulates the constraint 

obeyed by image point correspondences if they are to be 

images of the same 3D point arising from the co-planarity 

of the camera centers of the two views, the images points 

and the space point known as epipolar geometry [1]. 

Epipolar geometry can be obtained from the image 

correspondences when the camera parameters and the 

motion between them are unknown. Besides, Epipolar 

geometry is independent from the structure of the scene 

and it relates only to the internal parameters and relative 

pose of the two camera systems. The fundamental matrix 

can be estimated from the point correspondences of the 

two images without knowing the internal information of 

the cameras in advance. 

Recent research on estimating the fundamental matrix 

can be classified into linear methods, iterative methods and 

robust methods. The linear methods include the seven-

point algorithm, eight-point algorithm, least-square 

technique, orthogonal least-square technique and analytic 

method with the rank-2 constraint [2]. These leaner 

methods are time-saving but sensitive to noises and a 

problem with the linear criterion is that the quantity 

minimized is not physically meaningful. The iterative 

methods are classified into two groups: those minimize the 

distance between points and epipolar lines and those are 

based on the gradient [3]. The iterative methods have 

improved the accuracy compared with the linear methods, 

but they consume more time and cannot deal with outliers 

and have to solve the initial fundamental matrix and 

weights as well as conditions for looping termination. The 

                                                           
* Corresponding author’s e-mail: leewb@bjfu.edu.cn 

robust methods can cope with outliers, bad locations and 

false matching as well. Generally used robust methods 

include M-Estimators, Least-Median-Squares (LMedS), 

Random Sampling Consensus (RANSAC), MLESAC and 

MAPSAC [3]. 

Thus, this paper presents two different approaches to 

estimate the fundamental matrix: one is based on iterative 

computation; the other is robust estimation. The iterative 

approach, utilizing the least-square technique, extracts a 

set of point matches to compute the initial fundamental 

matrix and weights and determines the computation loop 

by concerning the Euclidean distance between matched 

points and epipolar lines. The robust estimation that is an 

improved RANSAC approach, adopts a stricter way to 

remove outliers from the initial matched points in order to 

achieve the optimal points set. Experimental results on 

both real image and synthetic data reveal that our proposed 

two methods are superior to corresponded original ones in 

terms of accuracy and robustness against Gaussian noises. 

 

2 Epipolar geometry and the fundamental matrix 

 

The epipolar geometry between two views is essentially 

the geometry of the inter-section of the image planes with 

the pencil of planes having the baseline as axis [6]. The 

epipolar geometry exists between the two camera systems 

focusing on the same scene. Consider that C  and C  are 

the optical centres of two cameras shown in Figure 1. 

Given a point m  in the first image, its corresponding point 

m  on the second image lies on a line called the epipolar 

line of m , denoted by l . This is known as the epipolar 
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constraint [1]. In order to map m  with m , the following 

equations must be satisfied in Equation (1). 

0 Τm Fm  (1) 

The epipolar geometry is contained in the fundamental 

matrix F  and F  is a 3 3  matrix of rank 2 (i.e. 

det( ) 0F ). 

In the last few years, several methods have been 

proposed and all the methods of estimating the 

fundamental matrix are based on solving a homogeneous 

system of equations: Equation (1). The equations can be 

rewritten in the following way as Equation (2). 

0n f U , (2) 

where 

11, 21 31 12 22 32 13 23 33( , , , , , , , )f = F F F F F F F F F  (3) 

' ' ' ' ' '
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U  (4) 

This set of linear homogeneous equations and the rank 

constraint of the matrix F  allow us to estimate the 

epipolar geometry. There are 9 unknown parameters, but 

because of the scale factor forcing the fundamental matrix 

to be rank-2, there are only 7 independent parameters 

which are given by two independent columns. 

 

FIGURE 1 Epipolar Geometry 

 

3 Related methods 

 

3.1 AN IMPROVED ITERATIVE METHOD 

 

Iterative methods fully take advantages of constraints 

parameters of the fundamental matrix through well 

parameterization with the rank-2 constraint, and they can 

be classified into two groups: the first one is based on 

minimizing the distances between points and epipolar 

lines; the second one is the gradient. Luong and Faugeras’s 

weighted linear iterative approach is that the initial weights 

are all set to be 1 against varying situations and the starting 

fundamental matrix is given using the eight-point 

algorithm [4]. Our method carries forward their iterative 

approach as follows. Firstly, a weighing fundamental 

matrix F  is computed through the least-square algorithm 

to calculate the weighted Euclidean distance between 

matched points and epipolar lines and the standard 

deviation   [3]. Secondly, matched points set M  is 

divided into two subsets (
1M , 

2M ) according to  . 

Weighted distances of points in subset 
1M  are greater than 

 ; 
2M  consists of points which distances are no more 

than  . Thirdly, the mean weights 
0w  are to be 

computed using subset 
1M  and then estimate the initial 

iterative 
0F  through the linear least-square technique. 

Fourthly, iterative calculation of 
iF  is performed using the 

subset 
2M  and figure out the Euclidean distance ,d iE  

between 
-1iF  and terminate the iteration loop if 

iE  is 

greater than the given threshold value e . Detailed 

procedures are shown in Figure 2. 

 
FIGURE 2 Flow scheme of the improved iterative method 
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3.2 A BETTERED RANSAC APPROACH 

 

The RANSAC technique originally proposed by Fischler 

and Bolles [8] has been widely used for robust parameter 

estimation to overcome the outlier problem. The basic idea 

of using RANSAC for fundamental matrix estimation is as 

follows: randomly selecting a number of minimal subsets 

of point correspondences to determine the fundamental 

matrix for each subset, and then find the best fundamental 

matrix that is most consistent with the entire set of point 

correspondences [9]. Detection of outliers is merely 

performed at a time in every loop during the RANSAC 

process, meaning that removing outliers only depends on 

the single detection at each loop. 

 

 

FIGURE 3 Principle flow scheme of the improved RANSAC approach 
 

Our approach extends the original RANSAC technique 

by removing outliers from the initial points set every five 

loops after being evaluated to get the optimal points set and 

then estimates the fundamental matrix through the 

orthogonal least-square algorithm. The principle flow 

scheme of our approach is shown in Figure 3 and the 

detection of outlier candidates can be seen in Figure 4. 

Figure 5 illustrates how to pick out exterior points 

(outliers). Evaluate repentances of candidates in the 

candidate matrix outS  as their scores in order to pick out 

outliers to be removed in the point subset ( 1)j j M  of the

thj iteration. 

 
 

FIGURE 4 Flow scheme of the DetectOutliers function 
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FIGURE 5 Flow scheme of the PickOutlier function 

 

4 Experiments 

 

In this paper, both synthetic data and real images are used 

to perform the experiments of both proposed methods and 

original ones. The accuracy of each method is considered 

as the mean and standard deviation of the discrepancy 

between points and epipolar lines, and the robustness is the 

accuracy under different ranges of Gaussian noises using 

synthetic data. In order to evaluate the time consumed for 

estimating the fundamental matrix with varied number of 

points, experiments are repeated for 100 times to get the 

average values. 

 

4.1 EXPERIMENTS WITH SYNTHETIC DATA 
 

In the experiments with synthetic data, the point matches 

are randomly generated by space points in 3D space which 

are visible to two different positions of a synthetic camera 

[2]. Concerning iterative methods, 100 pairs of matched 

points are used to estimate the fundamental matrix through 

both the original and proposed. As for RANSAC 

approaches, 300 pairs are utilized for estimation of the 

fundamental matrix. The sensitivity to different ranges of 

Gaussian noises is also covered in experiments. Different 

ranges of Gaussian noises are added to the point 

correspondences, whose means are 0 and variances vary 

from 0 to 1. 

 

4.2 EXPERIMENTS WITH REAL IMAGES.  
 

Real images are captured by two cameras of an identical 

scene at different views, are used to estimate the 

fundamental matrix, and then the point correspondences of 

the images are detected and matched according to [10-12]. 

As for iterative methods, 250 pairs of matched points are 

used to estimate the fundamental matrix through both the 

original and proposed; for RANSAC approaches, 89 pairs 

are utilized. Experimental results that are related to 

accuracy and robustness of algorithms are also collected 

such as the mean and standard deviation of the discrepancy 

between points and epipolar lines. 

 

5 Results 

 

5.1 ITERATIVE METHOD 

 

5.1.1 Synthetic data 

 

Two fundamental matrices with synthetic data are 

produced as follows: 
itF  is computed by the original 

iterative method; proF  is estimated using our improved 

iterative method. 

3.8535e-005 1.1564e-004 2.3757e-002

-2.4031e-004 1.0032e-004 -1.4350e-002

-1.3386e-001 1.1110e-001 1.0000e+000

it

 
 

  
 
 

F . 

3.8535e-005 1.1564e-004 2.3757e-002

-2.4031e-004 1.0032e-004 -1.4350e-002

-1.3386e-001 1.1110e-001 1.0000e+000

pro

 
 

  
 
 

F . 

The fundamental matrices above satisfy the constraint 

of rank-2. In order to evaluate the sensitivity to noises and 

outliers of the proposed method, the noise-outlier-

containing data as shown in Table 1 are added into 
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experiments and the mean and standard deviations of the 

discrepancy between points and epipolar lines are 

computed using both fundamental matrices. In most cases 

of noises and outliers, the proposed approach performs 

better than the original in terms of the mean and standard 

deviation. When both the variance of Gaussian noises and 

the percentage of outliers go down, performances of the 

proposed become even better, which can be inferred from 

results of the case ( 0.0,10%  ). When the percentage 

rises with a fixed variance, performances of both 

approaches decline in an almost identical gradient. When 

the variance ascends with a constant percentage of outliers, 

the fundamental matrix estimated by the proposed loses 

more accuracy that means it is more sensitive to noises. 

 

TABLE 1 Means and standard deviations of the discrepancy between points and epipolar lines using synthetic data 

Variance 0.0   0.0   0.1   0.1   0.5   0.5   

Outlier Percentage 10% 50% 10% 50% 10% 50% 

Original 
Mean 51.6283 92.2913 60.3065 86.1131 76.4548 83.8917 

STDEV 47.4254 68.2687 55.6416 65.5661 56.6761 80.7522 

Improved 
Mean 44.7236 82.2232 66.2452 83.0093 86.5723 80.5916 

STDEV 40.5370 60.9599 57.4684 63.7591 61.4099 64.7965 
 

 

5.1.2 Real Images 

 

As shown in Figure 6, two images, which are captured by 

two cameras of an identical scene at different views, are 

used to estimate the fundamental matrix, and then the point 

correspondences of the images are detected and matched 

according to [10-12]. Use all 250 point matches to estimate 

the fundamental matrix using our proposed method 

together with the original iteration and the least-square 

approach. Fundamental matrices are estimated as follows: 

itF  is generated by the original iterative method; proF  is 

figured out through the proposed. 

4.7149e-007 1.4063e-006 -4.0776e-004

8.0341e-006 2.4511e-005 -6.9571e-003

-1.1526e-003 -3.5326e-003 1.0000e+000

it

 
 

  
 
 

F  

5.4044e-007 2.0851e-006 -5.4099e-004

6.6304e-006 2.6149e-005 -6.8650e-003

-9.7893e-004 -3.8016e-003 1.0000e+000

pro

 
 

  
 
 

F  

Figure 7 demonstrates the means between points and 

the epipolar lines using both methods in every iterative 

procedure. Though the means of the presented bump in the 

beginning iterations and are greater than that of the 

original, from the fifth iteration the means begin reducing 

and when it comes to 10 iterations both methods perform 

nearly the same. Moreover, since 13 iterations, the means 

of the proposed are smaller than that of the original and 

convergent reaching 17 iterations. This reveals that the 

proposed needs more iteration so that the consumed time 

increases as well. 

 

 
FIGURE 6 Real images used in this experiment 

 

FIGURE 7 Means between points and epipolar lines using both methods 

Table 2 shows the means and standard deviations of the 

discrepancy between points and epipolar lines under both 

methods as well as the time of estimating the fundamental 

matrix with ranging number of points. The means of the 

presented are 55.0693 that are smaller than that of the 

original 56.8739; the standard deviations are also smaller. 

It is reasonable to say that the proposed performs better in 

terms of means and standard deviations and runs more 

accurate and robust than the original. 

 
TABLE 2 Means and standard deviations of the discrepancy between 

points and epipolar lines using real images with the time consumed 

Algorithm Original Iterative Improved 

Mean 56.8739 55.0693 
STDEV 43.8902 42.0962 

Time Consumed (s) 0.0194 0.1572 
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5.2 RANSAC APPROACH 

 

5.2.1 Synthetic data 

 

Two fundamental matrices with synthetic data are 

produced as follows: 
RANSACF  is computed by the original 

RANSAC approach; proF  is estimated using our improved 

approach. 

-4.3467e-006 4.0600e-006 -9.3295e-004

2.6873e-005 -3.2504e-005 -6.5798e-003

4.0246e-003 -3.6775e-003 9.9996e-001

RANSAC

 
 

  
 
 

F  

-4.3469e-006 4.0602e-006 -9.3298e-004

2.6874e-005 -3.2505e-005 -6.5801e-003

4.0248e-003 -3.6776e-003 1.0000e+000

pro

 
 

  
 
 

F

 

The sensitivity to noises and outliers of the proposed 

method are evaluated with the noise-outlier-containing 

data and the mean and standard deviations of the 

discrepancy between points and epipolar lines are 

computed using both fundamental matrices above as 

shown in Table 3. Given the initial points set 
0M , when 

percentages of outliers are less than 30% , the proposed 

performs worse; when there are more than30%outliers, its 

performances are better. Nevertheless, the means and the 

standard deviations of the proposed processed with the 

generated final set jM  are greater than that of the original. 

Besides, the means and standard deviations of the original 

RANSAC approach reduce sharply with the final set 

( 0)j j M  that is generated using the improved. This 

reveals that the subset jM  consists of much more interior 

points than 
0M  does, inferring that the algorithm of 

removing outliers used in our approach works fine. 
 

TABLE 3 Means and standard deviations of the discrepancy between points and epipolar lines using synthetic data 

Points set 
Variance 0.0   0.0   0.5   0.5   

Outlier Percentage 10% 20% 30% 40% 

0M  

Original 

RANSAC 

Mean 26.4562 9.4699 20.8774 24.8397 

STDEV 39.8356 27.1077 31.0247 43.2012 

Improved 
Mean 68.3065 17.8038 19.2313 19.4201 

STDEV 95.7710 38.6972 31.5069 40.0162 

( 0)jj M  

Original 

RANSAC 

Mean 1.9765 0.5157 2.2693 6.6407 

STDEV 12.2510 2.3550 3.6243 9.7422 

Improved 
Mean 32.2963 8.7818 2.6775 5.6776 

STDEV 29.7758 11.7804 3.4263 10.0101 
 

 

5.2.2 Rea images 

 

Two fundamental matrices with real images shown in 

Figure 8 are generated as follows: 
RANSACF  is computed by 

the original RANSAC approach; proF  is estimated using 

our improved approach. 

-3.6666e-007 -2.5992e-005 8.8458e-003

2.5965e-005 1.0040e-007 -1.3910e-002

-9.0006e-003 1.1450e-002 9.9976e-001

RANSAC

 
 

  
 
 

F

 

1.4221e-007 -2.2705e-005 7.7440e-003

2.2965e-005 -1.0493e-007 -1.1206e-002

-8.4282e-003 9.0704e-003 1.0000e+000

pro

 
 

  
 
 

F  

Table 4 shows the means and standard deviations of the 

discrepancy between points and epipolar lines with both 

fundamental matrices ( ,RANSAC proF F ) above as well as the 

time of estimating the fundamental matrices. 89 pairs are 

generated as the initial points set 
0M  and 54 pairs are 

produced using our improved RANSAC approach as the 

final set ( 0)j j M . Though the proposed performs a little 

bit worse than the original with the initial set 
0M  in terms 

of means and standard deviation, it bounds back with jM

. Besides, the original RANSAC approach estimates a 

much better fundamental with jM  than 
0M  does. It is 

obvious that the means and the standard deviations using 

the final set jM  are smaller, which means that jM  much 

less outliers than 
0M  does and successfully removes a 

great number of outliers. As removing outliers is much 

stricter and consumes much more time as well, the time 

consumed of the proposed increases great. 

 

TABLE 4 Means and standard deviations of the discrepancy between points and epipolar lines using different algorithms and point matches with the 
time consumed 

 0
M  Time Consumed (s) ( 0)jj M  Time Consumed (s) 

Points matched 89 － 54 － 

Original 
Mean 3.6724 

0.267263 
0.8211 

0.212777 
STDEV 11.4096 0.7630 

Improved 
Mean 4.0887 

2.584081 
0.7657 

2.299936 
STDEV 12.6091 0.5671 
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FIGURE 8 Real images used for this experiment 

 

6 Conclusions 

 

This paper presents an improved iterative method and a 

RANSAC approach: the iterative method, utilizing the 

least-squares technique, extracts several point matches to 

compute the initial fundamental matrix and weights and 

determines the computation loop through concerning the 

Euclidean distance between matched points and epipolar 

lines. The robust estimation that is a RANSAC approach, 

adopts a stricter way to remove outliers from the initial 

matched points. Our approach extends the original 

RANSAC technique by removing outliers from the points 

set every five loops after being evaluated to get the optimal 

points set and then estimates the fundamental matrix 

through the orthogonal least-square algorithm at each 

iteration. Meanwhile, different ranges of Gaussian noises 

are added to experiments with synthetic data to test the 

robustness of our proposed methods compared to original 

ones. Besides, in order to evaluate the performances of 

these two proposed approaches, the experiments are 

repeated for 100 times.  

Experiments with the improved iterative approach 

reveal that when both the variance of Gaussian noises and 

the percentage of outliers go down, performances of the 

proposed become even better; when the percentage rises 

with a fixed variance, performances of both approaches 

decline in an almost identical gradient; when the variance 

ascends with a constant percentage of outliers, the 

fundamental matrix estimated by the proposed loses more 

accuracy, meaning that it is more sensitive to noises.  

Though the improved RANSAC method performs a 

little bit worse than the original with the initial set 
0M  in 

terms of means and standard deviation, it bounds back with 

jM . Besides, the means and standard deviations of the 

original RANSAC approach reduce sharply with the final 

( 0)j j M that is generated using the improved RANSAC. 

This reveals that the subset jM  consists of much more 

interior points than 
0M , inferring that the algorithm of 

removing outliers used in our approach works successfully 

and fine. 
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